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The evolution of a linear vortex filament close to a rigid sphere is investigated at high 
Reynolds number. The limiting evolution in an ideal flow, is analysed using a cutoff 
method and the results are compared with those of a singular vortex approach able 
to account for a viscous effect on the vortex structure evolution. The computed 
results show the creation of a closed vortex structure in ideal flow and also, at low 
Reynolds number, an unrealistic reattachment of the vortex to the surface of the 
body. The nature of the boundary-layer development, when the no-slip condition is 
satisfied, is calculated near the symmetry plane. The solutions show the development 
of an unsteady, vortex-driven, separating boundary layer with the three-dimensional 
separations dependent on the initial distance of the filament from the wall. All the 
solutions ultimately show a rapid growth of the secondary vorticity field near the 
surface and suggest an ejection from the boundary layer, followed by a strong 
viscous-inviscid interaction. 

1. Introduction 
The understanding of vortex motion in incompressible flows at  high Reynolds 

number is a matter of increasing interest for environmental and industrial 
applications. The large effort required to calculate the Navier-Stokes solutions for 
such vortical flows, in particular, when boundaries are present, motivates many 
authors to search for an infinite-Reynolds-number asymptotic description of the 
vortical flow. The three-dimensional behaviour of vortex lines, as well as that of 
large-scale turbulent structures in a real fluid, has been studied by means of the 
computational methods for vortex filaments moving in an inviscid flow field. Many 
features of the interactions between vortex filaments are understood (Dhanak & De 
Bernardinis 1981 ; Chorin 1982; Siggia 1985; Winckelmans & Leonard 1988; 
Pedrizzetti 1992) ; more recently interactions with rigid bodies have been investigated 
(Walker 1978; Dhanak 1981; Doligalski & Walker 1984; Walker et al. 1987; Ersoy 
& Walker 1987; Pedrizzetti 1991a, b ;  Peridier, Smith & Walker 1991). 

However, some physical processes associated with short-range interactions that 
are dominant in turbulent flows, such as the splitting and the reattachment of vortex 
tubes, as well as the bursting in boundary layers associated with the approach of 
vortex structures to solid boundaries (Smith et al. 1991), can be described only by 
taking into account the viscosity of the fluid. 

The interaction of an infinitely long vortex filament with a rigid sphere, 
approaching from infinity, has been studied, in an incompressible inviscid flow, by 
Dhanak (1981), using the cutoff method. He defined a vortex image system in order 
to obtain a zero normal velocity on the surface of the body. The evolution of the 
filament, during the infinitely long period when the filament is approached with 
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constant speed by the body without being strongly deformed, has been computed by 
analytically solving a linear approximation of the equation of motion. Although it is 
not clear how to state the distance over which such an approximation is valid, a finite 
distance needs to be chosen as the initial condition for the numerical integration. A 
smooth evolution of the filament was obtained numerically, until the vortex gets so 
close to the sphere that the finite core of the vortex tube touches the surface of the 
body. 

In the present work the evolution of an infinite vortex filament is investigated as 
it approaches a sphere that is fixed and embedded in a high-Reynolds-number flow. 
First, the problem has been investigated again by the cutoff method and the 
numerical solution shows the same features as already obtained by Dhanak (1981). 
Then the method is used to explore the complete inviscid evolution prior to core 
touching, regarding the cutoff only as a numerical regularization procedure. Then the 
results of the previous inviscid method are compared with those of a singular vortex 
(vorton) approach (Saffman 1980; Novikov 1983), which contains an intrinsic 
numerical viscosity (Pedrizzetti 1992) able to account for a viscous effect on the 
vortex structure evolution. In  this case the vortex filament, after a short time of 
rapid stretching, does not loop around the sphere, as in the inviscid case, but breaks 
and becomes attached to the free-slip surface of the body owing to the reconnection 
with its image inside the sphere. 

However, the inviscid description is incomplete, and in the limit of infinite 
Reynolds number when the vortex filament approaches the sphere surface, 
attachment is prohibited by the no-slip condition, and an unsteady boundary layer 
is expected to develop ; in this layer a secondary vortex is generated and ultimately 
ejected to interact with the primary vortex filament (Harvey & Perry 1971; 
Blondeaux & De Bernardinis 1983; Walker et al. 1987). 

A timescale analysis of the looping, the reattachment, and the secondary vortex 
generation is performed showing that a strong viscous-inviscid interaction, even 
when the filament is not very close to the body surface, must be expected to be the 
dominant feature of the flow field. 

The three-dimensional boundary-layer separation and the beginning of the 
secondary vortex generation are calculated near the symmetry plane (Ersoy & 
Walker 1987) and flow patterns at the critical points are analysed (Perry & Fairlie 
1974). 

2. Ideal limit 
2.1. Presentation of the problem 

Consider a sphere of radius R,  with its centre in the origin of a Cartesian system of 
coordinates, and a rectilinear filament, with circulation r, parallel to the Z-axis, 
intersecting the (X, Y)-plane at  the point (d* + R ,  0,O). We make the problem 
dimensionless by choosing the unit of length L to be R and the unit of time T to be 
4xB2/r. Thus the only dimensionless parameter in the problem is d = d*/R,  the non- 
dimensional initial separation of the filament from the body surface. 

The filament is identified by its coordinate Xf(E,t), where t is the dimensionless 
time and 6 is a parametric coordinate, along the filament, chosen so that 5 = constant 
always refers to the same fluid particle. The velocity induced by the filament at a 
point x, distant from the filament itself, is obtained using the Biot-Savart law as 
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where V J x )  is the irrotational contribution to the velocity a t  x due to the image 
vorticity field within the sphere, required in order to satisfy the boundary condition 
of zero normal velocity on the sphere surface. 

The integral in (1) diverges as x + X f ( g , t ) ,  because a vortex line of zero cross- 
section moves with infinite speed when its curvature is non-zero. For this reason a 
cutoff of the integral must be inserted, for practical purposes, when ( 1 )  is used to 
compute the velocity of the vortex itself. This corresponds, from the physical point 
of view, to assuming a finite core size in the filament, as will be described below. 

2.2 .  Image system 
The image system of a vortex element in a sphere has been given by Lighthill (1956), 
under the additional constraint that, if the vortex element is part of a solenoidal 
vortex field, the image vortex field is also solenoidal; this renders the solution unique. 
We briefly outline here the results applied to the present work. 

Given an infinitesimal portion of the vortex filament centred a t  x of strength 
y = ax/af;df; and denoting r = (XI, the image system is given by: 

(i) a vortex element at  the inverse point x* = x/r2, of strength 

(ii) a line vortex of circulation -(y-x/r) stretching from x* to the centre of the 
sphere. 
The velocity in a point xp, due to (i) is given by 

the velocity due (ii) is 

where a = IxPl2 and p = - ( 2 / r )  (xp*x) .  
The filament is regarded as being closed by a semicircle of infinite radius. The 

velocity field due to (i) is of the order df;/r. By expanding the velocity due to (i) in 
powers of l / r ,  we obtain 

The first term on the right-hand side of (4) is O( l / r )  df; and gives a null contribution 
when integrated along a closed path. Thus, when considering a closed filament, it can 
be subtracted from (2) to yield 
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As the two velocity fields due to (i) and (ii) defined in (3) and (5)  are of O( l/r)'dC, 
they give a null contribution when integrated along the semicircular path of infinite 
radius, and the vortex elements can be distributed only on the open range (-03, 

+ a). 
2.3. Cutoff method 

In order to use (1) to compute the evolution of a filament in ideal flow we must 
introduce a suitable cutoff method for making the integral finite. Following Moore 
(1972) (see also Moore & Saffman 1972), Rosenhead's cutoff method is used here. This 
requires that the denominator of the integrand in ( I )  be replaced by a strictly 
positive function by introducing a cutoff parameter p ;  in this way we obtain the 
modified Biot-Savart equation 

Here p represents a lengthscale characteristic of the filament cross-section, that, in 
the case of a circular section, is proportional to the core radius c .  In particular, 
assuming that the vorticity is constant inside the core and zero outside, with no axial 
flow, and using the exact solution for the velocity of a circular vortex ring, the 
relation is 

c = exp. 

The evolution of the filament core size, c ,  can be taken into account by considering 
the vortex volume conservation during stretching of the vortex lines. This 
consideration leads to a variation of c along the filament due to differential 
stretching. However Moore & Saffman (1972) showed that any variation in the 
internal structure along the filament produces an axial flow which smooths it out in 
a time that is short compared with the timescale associated with changes in the 
geometrical configuration of the filament. In the present case of an infinite vortex, 
this corresponds to maintaining the cutoff p constant in time and along the filament. 
The cutoff constancy also ensures an Hamiltonian structure of the filament evolution 
equation (6) (Agishtein & Migdal 1986). For these reasons, even though when the 
filament is very close to the sphere the velocity of the filament due to the image is 
O(c-'), that is the same order of magnitude as the axial flow (Pumir & Siggia 1987), 
in the present work we decided to assume the cutoff p to be constant. In fact when 
the filament gets close to the sphere the core deforms and assumption (7) becomes a 
poor estimation; in addition the model (6) becomes questionable and the cutoff is 
regarded only as a numerical regularization procedure. 

3 

(7) 

2.4. Numerical approximations 
The last issue to be defined here is how to deal numerically with the infinite range of 
integration due to the infinite length of the vortex filament. The positions of portions 
of the vortex which are farther than a few radii of the sphere from the Z = 0 plane 
will not change significantly with respect to the central part of the filament and 
the curvature is approximately zero ; the infinite portions of undisturbed filament 
+[E, ,  oo), with to % 1, make a contribution due to its image to the velocity in the 
central part of the filament of the order of l/ijo. With this in mind we choose a value 
5, % 1 , with I/(, smaller than a defined precision (typically 5, - lo5) such that the two 
semi-infinite portions of filament & [to, 03) can be neglected. Then we choose another 
value El, with go % Cl > 1,  such that in the two portions &- [tl, 6,) the filament has a 
negligible curvature. Here the vortex self-induced velocity is also negligible and the 
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actual value of the core radius has little influence, such that it can assume values 
substantially different from the physical one without modifying the influence of these 
portions on the whole vortex motion. In these portions grid points are distributed 
with a spacing growing in a geometric progression A& = aA&-l, also implying, as will 
be clear below, a geometric growth of the cutoff length. Finally, in the internal region 
(-&, +&), we distribute the computational points in order to have the desired 
resolution and reproduce correctly the actual core size. This procedure permits an 
accurate description using a reasonable number of points, provided the radius of 
curvature is everywhere much larger than the grid point spacing, and the point & is 
well outside the range of interest. 

A grid point intersection procedure has been implemented in order that the ratio 
between grid spacing, Ax, and cutoff length, in the central region, A x / p  < 1.5. This 
ensures an error in the evaluation of the self-induced velocity of less than 3 YO, as 
compared with the exact solution for a thin circular ring, for a ratio between radius 
of curvature and core size of greater than 5.  The new point is inserted automatically 
by computing a second-order best approximation of the nearest four points. The 
value of 6, has been fixed to 3 and the parameter a = 1.5; in this way we arrive at 
5, w lo5 with about 200 grid points. The values of the numerical parameters have 
been chosen after a extensive sensitivity study, part of which is reported in 
Pedrizzetti (1991 a). 

The strongest contribution to the velocity field in (6) is given by the contribution 
of the image vortex. The vortex velocity due to the image system is of 0 ( 1 )  initially 
and becomes O(c-') when the vortex core touches the sphere; the vortex self-induced 
velocity is much smaller and ranges respectively from 0 to 1. The strong influence of 
images has required a careful time integration, while the introduction of the 
expansion of the integrand in (6) near the computational points (Dhanak & 
De Bernardinis 1981; Ersoy & Walker 1987) to improve accuracy and avoid 
instabilities of the weaker contribution proved unnecessary. 

The numerical integration is carried out using a fourth-order Runge-Kutta time 
advancement with a variable time step. The maximum time step is taken as 
dt = 2 x and equal to the dimensionless maximum displacement of a grid point 
in one step, so that the actual time step used is always much smaller than dt after the 
initial period. 

- 

2.5. Calculated results 

The value of the initial distance between the filament and the sphere surface, d, does 
not influence the qualitative picture of the close vortex-body interaction ; indeed we 
observed that when the vortex starts a large distance from the sphere, it always 
evolves to a configuration in which the distance is comparable with the sphere radius 
(say d - l ) ,  with the filament only slightly deformed (that is its radius of curvature 
is much larger than one). For this reason we focus our attention on a unique initial 
configuration with d = 1, in order to observe a typical close interaction the filament 
with the body. 

During this research work we performed several simulations with core size c 
varying from 0.05 to 0.2. The value c = 0.1 (p x 0.0472) was then fixed since the 
qualitative picture of the interaction does not change. This small value is considered 
sufficient for the accuracy of the model described by the evolution equation (6), 
which is accurate only in the limit of radius of curvature of the filament, here 
expected to be 0(1), much larger than the cutoff value (Moore & Saffman 1972). 

As expected from the previous works of Dhanak (1981) and Pedrizzetti (1991 a) the 
central part of the filament starts to move around the sphere, creating a non-zero 
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FIQURE 1. Evolution of an ideal vortex filament, of core radius 0.1, starting a distance d = 1 from 
a sphere. Top view, side view, and end view are shown from left to  right, at times t = 0;  t = 1.497; 
and t = 1.545. 

curvature, and then the self-induced velocity leads it toward the body surface. When 
it arrives very close to the surface it rapidly stretches over the sphere and acquires 
a significant perturbation due to the body surface shape. The initial evolution of the 
vortex filament is shown in figure 1. At time t = 1.545 the vortex core has already 
touched the surface of the sphere; however the integration is continued to explore 
the complete inviscid evolution after the core has touched, regarding the cutoff only 
as a numerical regularization procedure. Thereafter the central portion of the 
filament stretches rapidly over the sphere until two symmetric points in the vortex, 
initially distant, touch each other. After this point the computation cannot continue 
because of the ideal model. A three-dimensional sketch of the final vortex 
configuration is.given in figure 2. 

This result provides only an approximation of the actual ideal evolution, as 
discussed above, because of the unknown real evolution of the transverse filament 
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FIQURE 2. Looping of an ideal vortex filament of core radius 0.1, around a sphere initially at a 
distance d = 1 ; axonometric projection at time t = 1.582. 

section. However, the qualitative independence from the core radius value strongly 
suggests the possibility that when a thin vortex filament comes in close contact with 
a sphere (in an ideal fluid) it gives rise to an highly stretched vortex ring, which, in 
the presence of a slight dissipative effect, will eventually detach, leaving the body 
taking a net impulse from the vortex structure. 

3. Viscous evolution on free-slip surface 
3.1. Method of solution 

In the previous section we observed the ideal evolution of the vortex filament, and 
inferred that a slight viscous effect can permit some topological change to be seen in 
the vortex structure. The first step in order to extend the results to include viscosity 
can be accomplished by considering the presence of a viscous effect in the vortex 
structure evolution, still without taking into account the influence of the viscous 
boundary layer on the outer flow. In order to do this we consider the vortex 
singularities (vorton) method. 

The vorton method is very similar to the cutoff method described above, the main 
difference being in the fact that the integral ( 1 )  is discretized a priori and the 
computational points along the filament are not ordered; that is the parametric 
coordinate is used only to define the initial configuration of the filament and then 
forgotten. The vorton method has been introduced by Saffman (1980) and Novikov 
(1983) (see also Aksman, Novikov & Orszag 1985; Pedrizzetti 1992, for further 
developments), and we briefly outline here the model as used in the present work. 

Consider an initial configuration of the vortex filament X,(E) and assume a 
discretization of the parameter space 6, with AE(a) = E(Or+l) - t(O1) small but finite. 
Define the position of the centre and the intensity of the ath portion of filament 
respectively as 

)) ; 7'"' = (aX,(E)/al#a) A f a ) .  (8) X(a)  = Xf(;(E(a) + E(a+l) 
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The vortex filament structure can be discretized by a number N of vortex 
singularities, located a t  da), of intensities y'"), 01 = 1,2 ,  . . . , N :  

with 6( * ) being the Dirac delta function. Once the singularities are defined by (8) they 
are assumed to be independent and the parametric coordinate E is abandoned. The 
vortex field (9) induces a velocity field a t  any point da) that can be computed by 
means of the Biot-Savart law to yield 

where the dot denotes differentiation with respect to time. 
Equation (10) represents a discrete version of (1)  in which the cutoff is given by the 

omission of the a = term. A difference lies in the fact that the loss of the parametric 
coordinate < does not permit the computation of the derivative term present in the 
integrand of ( l ) ,  which is substituted by y in (10). For this reason an equation for the 
evolution of the intensity vector must now be introduced. Substituting (9) and (10) 
into the vorticity equation for an inviscid flow 

doldt = (0.V) U ,  (11)  

= y(4. vu(x(a)). (12) 

gives the equation for the evolution of the vorton intensities 

The cutoff, implicit in this formulation of the problem defined in (l) ,  has a lengthscale 
equal to the distance, Ax, between vortex singularities. I n  this way a uniform core 
size proportional to the cutoff length is implicitly assumed giving an equation 
analogous to (7) (Pedrizzetti 1992) : 

c x 0.875Ax. (13) 

A major problem of this formulation is the core evolution. In  fact, following (13), 
the core size increases during stretching of vortex lines; for this reason a dividing 
vortex procedure is introduced in order to maintain the core size constant on average 
(see Pedrizzetti 1992, for estimates of the approximation). 

The vortex system as defined in (9) is not divergence free (even though a 
divergence-free vorticity field can be reconstructed by taking the curl of (10)). 
Nevertheless, when we approximate ( 1 )  or (6) with a quadrature formula we also 
deal with a non-divergence-free vortex representation which well approximates the 
continuous filament structure. The main difference in the cutoff method is that the 
parametric representation introduces an order to the grid points which makes the 
method self-consistent in representing a continuous structure. In  the vorton method 
the independence of singularities requires a different approach such as the self- 
consistent filter introduced by Pedrizzetti (1992). 

The independence of the vortex singularities from a defined topological vortex 
configuration makes this model less accurate for simulating an ideal flow evolution. 
In  fact the model introduces implicitly a viscous effect in vortex motion during 
moments of rapid stretching. This implies an inherent regularization of the motion 



Interaction between a vortex $lament and a rigid sphere 

i 

709 

2. 

!.O 

z 

- 2.0 

FIGURE 3. Reattachment of a viscous filament of core radius 0.1, over a free-slip sphere surface, 
initially at a distance d = 1 ;  axonometric projection at time t = 1.556. The image vortex is 
sketched inside the sphere. 

and permits the reproduction of vortex reconnection, otherwise impossible, without 
observing high velocity gradients (Aksman & Novikov 1988; Pedrizzetti 1992). The 
value of this numerical viscosity has been estimated by Pedrizzetti (1992) as 

v - cdL/dt (14) 

where dL/dt is the stretching rate of a vortex line. During moments of vortex 
reconnection, the stretching increases strongly, and this viscosity rapidly approaches 
O(1) values, permitting the observation of a rapid reconnection. The derivation of 
(14) and a quantitative comparison with existing results on vortex reconnection are 
reported in Pedrizzetti (1992). 

The numerical discretization and integration is the same as described in $2 for the 
cutoff method, with dt = 

3.2. Calculated results 
Several simulations have been performed with this method, showing a good 

agreement with the results of $2 up to the time the filament comes very close to the 
sphere. 

When the filament arrives in the immediate vicinity of the sphere it is subjected 
to a rapid stretching. This makes the intrinsic viscous effect very important and we 
observe, very soon the vortex splitting into two parts, terminating on the free-slip 
surface of the sphere. This phenomenon is due to the presence of the image vortex 
inside the sphere, and, in absence of no-slip condition on the surface, the external 
vortex reconnects with its internal image, in analogy with the classical phenomenon 
of reconnection between real vortex structures. Figure 3 is a sketch of the vortex 
configuration after reattachment for d = 1 and c = 0.1 ; the image vortex is also 
sketched. This model reproduces the reconnection process spuriously because the 
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viscous effect (14) is unphysical. Thus it gives no idea of the time needed for the real 
process to develop, which depends of course on the real Reynolds number of the flow. 

3.3. Timescales analysis 
At this level of analysis we have observed two possible behaviours of the outer flow 
- the looping described in $2 and the reattachment of the present section - but we 
cannot be sure which one is the dominant process. For this reason we perform a 
timescale analysis for the phenomena described above in order to predict which of 
the possible processes actually dominates the external motion, at high Reynolds 
number, when the influence of the viscous boundary layer on the body surface is 
neglected. 

Both the looping and the reattachment phenomena are composed of two different 
phases. During the first phase, which is common for both processes, the filament 
approaches the body surface, before starting the second phase of close interaction 
with the body itself characterized by intense stretching and terminating with 
different phenomena. 

The characteristic time of approach, T,, in our simulation is observed to be 

T, x 1.5; (15) 

such a timescale is usually easy to estimate in different situations. The time for 
complete looping to develop, q, is estimated from the results of $2 as 

q X 0.1. (16) 

The reattachment time can be estimated by using a model for reconnection of two 
vortex filaments of opposite circulation. The order of magnitude can be obtained 
from Meiron et al. (1988), which in our units gives 

T,, N QlogRe, (17) 

where Re is the Reynolds number. A more accurate estimation can be obtained from 
the Saffman (1989) model where the complete reconnection is characterized by a 
rejoining time, T,,, depending on geometric characteristics, and a complete 
connection time T,,. In  our units we can write 

the time T,, ranges from 0.25, for Re = lo6, to 0.12 for Re = 10,; these values are 
somewhat smaller than what is given by (17). 

These figures suggest that the process of reattachment, when the Reynolds number 
is high enough, is slightly slower than the looping. When the Reynolds number is 
smaller than about 100 the two timescales of the processes are comparable, and both 
phenomena can be expected at  the same time. The above estimations also suggest 
that, in the case of a free-slip plane boundary, only the reattachment can be 
expected. 

The phenomena described in the previous sections do not take into account the no- 
slip boundary condition on the body surface, which prohibits, in a real flow, the 
termination of a vortex line on a solid wall. However, in the limit of very high 
Reynolds number, when the vortex filament approaches the sphere, it  is expected 
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that the flow induced at the wall develops an unsteady boundary layer. Such a layer 
can eventually separate, growing till a secondary vortex of opposite circulation is 
generated within the boundary layer itself and ejected to interact, by pairing, with 
the primary vortex filament. This behaviour has been observed experimentally 
(Harvey & Perry 1971 ; Blondeaux & De Berndardinis 1983; Walker et al. 1987) and 
found theoretically (Walker 1978; Peace & Riley 1983; Ersoy & Walker 1987). From 
these works, we can estimate the timescale for the occurrence of this rebouncing 
process. We found the ha1 time, when the pairing process has occurred, Tb, to range 
approximately between 0.2 and 0.5, which is comparable to the approach time. This 
characteristic time suggests that, at high Reynolds numbers, when the no-slip 
boundary condition must be satisfied and reattachment cannot exist, looping is 
unable to develop because of the quickness of the rebouncing process. 

This timescale analysis shows that, in the limit of large Reynolds number, the 
boundary-layer evolution is driven by an outer field which is essentially inviscid, 
until an ejection from the boundary layer causes a strong viscous-inviscid 
interaction, dominating the subsequent evolution of the flow field. 

4. Boundary-layer formulation 
As the external inviscid vortex moves it induces an unsteady vortex-driven three- 

dimensional boundary layer, whose accurate description with a full numerical 
simulation would require very large computer resources for the Reynolds number we 
are interested in. 

We followed the approach proposed by Ersoy & Walker (1987) that allows the 
computations of the leading term for all three components of the boundary-layer 
velocity field on and near the symmetry plane, 2 = 0. 

Consider the three-dimensional Navier-Stokes equations written in spherical 
coordinates (Batchelor 1967; Pedlosky 1979) with r ,  9,153 as the radial, azimuthal and 
zenithal coordinates respectively, where B = 0 represents the equatorial plane, and 
the meridian given by q5 = x faces the filament initial position; the respective 
velocities are w ,  u, and v. Let us define the following scaled variables: 

g = ( r -  1)Rei, tz = wRei; (20) 

where the Reynolds number Re = r l ( 4 x v ) .  
Near the symmetry plane, 8+0, we have v = O(B), u = ~($,f j , t )+0(8~) ,  and 

w = w($, g, t )  + 0(e2). The three-dimensional boundary-layer equations, with these 
variables, near the symmetry plane are 

Here p m  is the pressure distribution due to the vortex filament evaluated at the edge 
of the boundary layer. In (21) all the terms are of order 8, while in (22) and (23) the 
terms are of order one with respect to the variable 8. 
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Near the symmetry plane the zenithal velocity, w, can be written as 

= g ( 9 , g , t ) 8 + 0 ( 0 3 ) ,  (24 1 
where g = (aw/aO),,,. Solving for the pressure terms, using (21), (22) a t  the edge of 
the boundary layer, J +  00, and substituting (24) into (21)-(23) we obtain a set of 
equations describing the unsteady boundary layer on the symmetry plane, 

with the boundary conditions 

G = u = O ,  g = O  a t  % = O ,  (28 1 
u+u,, g+gm as J+m,  (29 ) 

and periodicity in the $-direction. 
For the numerical integration of (25)-(27) we introduce a stretched radial 

coordinate, r ]  = log (#+a/a) ,  ensuring a better resolution in the vicinity of the wall, 
where the parameter a determines the rate of coordinate stretch. 

Substituting the coordinate r ]  for the coordinate ij in (25)-(29), we can write the set 
of equations as 

which we then solved numerically with the boundary condition (28) imposed at  
r] = 0 and the condition (29) imposed, numerically, at alarge, but finite, value 17 = qmax. 

The numerical integration of (30)-(32) is performed by solving, a t  each time step, 
the filament motion with the cutoff method as described in $2, computing the 
velocity u, and the gradient g, on the wall using (l) ,  then taking these values, urn and 
g, respectively, as the boundary condition a t  infinity for the boundary-layer 
formulation. Then the boundary-layer equations are solved with a simple finite- 
difference method, assuming an impulsively started initial condition, which 
corresponds to an abrupt creation of the vortex filament in its initial configuration. 

The stretched radial coordinate permits the large numerical gradients which 
appear in proximity of the wall after the impulsive start to be followed. This has been 
monitored by comparing the circulation around the sphere on the 0 = 0 plane, as 
induced by the external inviscid vortex, and as given by the separated vorticity; 
these quantities become indistinguishable after few initial time steps. 

The system has been integrated with an implicit Adams-Bashforth second- 
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order scheme. In the following computation we used used the parameter a = 0.5, 
7max = 4. 

5. Boundary-layer evolution 
5.1. d = 1 

In the study of the boundary-layer evolution we can expect, as opposed to the free- 
slip evolution, a qualitative dependence of the results on the initial separation, d ,  
between the vortex filament and the sphere surface. The first case studied, for 
continuity with the preceding results, is for the initial separation d = 1. In  this 
configuration we performed two different simulation, with varying grid, using a 
128 x 64 grid and a 64 x 36 grid in the q5- and 7-directions respectively. The two 
simulations are absolutely indistinguishable until the last stage of the simulation 
( t  2 0.2), when large gradients appear and the greater resolution of the first mesh 
allows the simulation to continue a little longer. 

The three-dimensional motion in the boundary layer is complex and in order to 
have a sensible picture of the flow field we give three different plots : (a)  a contour plot 
of the vertical vorticity, w = au/aq, on the symmetry plane; (b )  a contour plot of the 
gradient, g ,  on the symmetry plane; and (c) limiting streamlines on the sphere 
surface, the (qj, O)-plane, close to the symmetry plane. 

The vortex filament induces on the boundary layer a vortex field, of opposite sign, 
varying in the tangential direction. For t = 0 there is a symmetry between the (0, x) 
and (x,2x) ranges of q5. After a short time an unsteady boundary layer begins to 
develop, disrupting the symmetry. The vorticity field elongates from the boundary, 
turning and reducing the amount of vorticity on the left and of the central nucleus, 
as depicted in figure 4 ( a ) .  The gradient of zenithal velocity, g ,  represents the outflow 
( g  > 0 ) ,  or inflow (9 < 0) ,  from and into the symmetry plane. In figure 4 ( b ) ,  the 
contour plot of g is reported at  t = 0.1. The g = 0 contours (dash-dot line), leaving the 
boundary, divide the inflow (dashed lines) and outflow (continuous lines) regions ; we 
can see the onset of outflow close to the boundary, corresponding to tangential 
velocity slowdown, apart from a small central region of persistent, relatively weak 
inflow. From this picture, the variations of the g- field in the radial direction suggest 
the appearance of streamwise vorticity of opposite sign above and below the 
symmetry plane, but the whole vorticity field in the #- and J-directions cannot be 
evaluated within the present approximation. The limiting streamlines, plotted in 
figure 4 ( c ) ,  show a wavy motion with a maximum in the tangential velocity at  about 
q5 = n. The vorticity field at t = 0.2, figure 5(a ) ,  presents an elongation from the 
boundary and a compression of the erupting vorticity, while a small vorticity region 
of opposite sign appears on the boundary at about q5 = 0 . 8 5 ~ .  The development of 
the gradient, g, is depicted in figure 5 ( b ) .  The small inflow region still persists and a 
localized important outflow structure appears at q5 x 0 . 7 6 ~ ,  corresponding to a 
separating vortex which encloses a focus. A similar local structure of the vertical flow 
was also observed in an infinite flat boundary layer driven by an inclined vortex ring 
(Ersoy & Walker 1987) but it is interesting to notice that in this case the sign is 
opposite, because of the closed boundary structure. The corresponding limiting 
streamlines, figure 5 ( c ) ,  show a first inversion of the tangential velocity, at  
4 = 0 . 7 9 ~ ,  where a strong outflow is present, with the onset of a radial outflow. On the 
right of this point, the tangential velocity changes sign again, corresponding to a 
relatively weak inflow. The subsequent local development can be observed in figure 
6, at t = 0.225, which shows an enlarged view of this region in the (4, r)-plane. The 
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R'I~UFCE 4. Vortex-induced boundary-layer development at t = 0.1, for initial vortex distance 
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levels from -2.5 to -0.25, step 0.25 (---); level 0 (--.--.); levels from 0.25 to 2.5, step 0.25 
(-) ; (c) limiting streamlines on the wall. 

9 h  

streamlines on the symmetry plane are shown, with the superimposed g = 0 contour 
(dash-dot line) separating the inflow and outflow regions. A complete secondary 
vortex structure, which actually appeared before t = 0.175, is clearly recognized, and 
is associated with a focus of strong flow out of the symmetry plane. The streamline 
patterns may be considered to be representative of a transverse section of a three- 
dimensional separating vortex (Smith et al. 1991). The vortex is confined, at  the wall, 
by two stagnation points. A stagnation point of attachment on the sphere surface is 
localized at qi = 2.39, characterized by a strong outflow in the &direction, while there 
is a stagnation point of separation at qi = 2.87 with a weak inflow from the third 
dimension. This type of separation is similar to that observed in two-dimensional 
separation induced by a vortex flow (Walker 1978; Peace & Riley 1983; Doligalski 
& Walker 1984; Peridier et al. 1991), the main difference lies in the fact that the 
streamlines do not form closed loops but spiral toward the focus to leave the 
symmetry plane. In  figure 7 we show a three-dimensional view of streamlines, 
selected from figure 6 but starting slightly above the symmetry plane. From this we 
can capture the three-dimensional structure of the separating vortex near the 
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FIQURE 5. Vortex induced boundary layer development a t  t = 0.2, for initial vortex distance 
d = 1. (a) Vorticity contours, levels from -8 to -0.5, step 0.5 (-); level 0.5 (---); (b) spanwise 
velocity gradient contours, levels from -2.5 to -0.25, step 0.25 (---); level 0 (--.--.-- ), levels 
from 0.25 to 2.5, step 0.25 (-); (c) limiting streamlines on wall. 

w 

symmetry plane, with streamlines spiralling toward the focus moving in the third 
dimension. After this time the flow presents increasingly strong spatial gradients, 
and the numerical scheme becomes inadequate, failing to converge after t = 0.26. It 
is worth noticing that the vortex distance from the sphere surface is reduced from 
d = 1 only to 0.96. The numerical results suggest the development of a singular 
behaviour of the viscous wall flow in finite time. A singularity is known to occur on 
the symmetry plane of a three-dimensional unsteady boundary layer when the 
separation line on the surface of the body crosses the symmetry plane normally (Van 
Dommelen & Cowley 1990; Van Dommelen 1990). During and after the three- 
dimensional separation a complete viscous-inviscid interaction of the boundary 
layer with the external vortex structure should be taken into account. 

5.2. d = 3 
In this configuration we performed the simulation using a 64 x 36 grid in the 4- and 
7-directions respectively, this lower resolution having been shown in the previous 
case to give an accurate description of the flow field, the only limitation being that 
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FIGURE 6. Enlarged view of the vortex-induced boundary-layer development at t = 0.225, for 
initial vortex distance d = 1. Streamlines on the symmetry plane are shown (-) with superposed 
spanwise velocity gradient zero contour (----). 

FIGURE 7. Enlarged view of the vortex-induced boundary-layer development at t = 0.225, for 
initial vortex distance d = 1 .  Axonometric view of selected streamlines. 

the mesh becomes inadequate a little sooner than with a more resolved grid a t  the 
final stage of the simulation; on the other hand i t  permits a long simulation to be 
performed, as it is in this case, with still affordable computational effort. 

The boundary-layer timescale is, in our units, Tbl - 1, and this represents the time 
needed by the boundary layer to readjust to  an external forcing; the timescale of the 
forcing, given by the filament, is given by its radius of curvature (or by the square 
of the distance, if it is smaller) which is much greater than 1,  so while the forcing is 
weak enough that a steady boundary-layer solution exists, the boundary layer has 
time to readjust to a stable quasi-steady equilibrium configuration. In the present 
physical problem, an important unsteady boundary layer starts to  grow only after 
the filament is within a critical distance of the sphere surface, which can be estimated 
to be about 2. An analogous phenomena was found by Walker et al. (1987), for the 
impact of a vortex ring on a wall; they showed that an important unsteady 
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FIGURE 8. Vortex-induced boundary-layer development at  t = 6, for initial vortex distance d = 3. 
(a )  Vorticity contours, levels from - 4  to  -0.5, step 0.5; (b )  spanwise velocity gradient contours, 
levels from - 1 to -0.25, step 0.25 (---); level 0 (-.-.- ) ;  levels from 0.25 to  2.5, step 0.25 
(-) ; (c) limiting streamlines on the wall. 

boundary-layer effect starts to develop after the ring has approached the wall within 
a distance comparable with its diameter. 

As the filament starts to evolve, a vorticity field of opposite sign starts to develop, 
as in the previous case, until, for t % 1, the evolution slows down to a quasi-steady 
configuration. In  figure 8 the boundary-layer structure is reported a t  time t = 6;  a t  
this time the vortex distance from the sphere surface is reduced from d = 3 to 2.38. 
The global structure has not changed qualitatively from the configuration a t  t = 1, 
and little even quantitatively along with the external forcing. The vorticity contours 
in figure 8 ( a )  (graphic inaccuracy is due to representing a contour, on a coarse grid, 
of a slowly varying function) show a quite diffused field, as compared with the 
preceding case. A peculiar characteristic of such an equilibrium solution is the onset 
of outflow close to the surface in a complete annulus surrounding the body, as shown 
in figure 8 ( b )  ; this can also be seen in figure 8 (c), where limiting streamlines show a 
one-signed tangential velocity. For t > 7, when the vortex-sphere distance is less 
than about 2.2, the boundary layer begins to depart from this equilibrium condition 
and its growth gradually accelerates. At time 8.5, when the filament distance has 
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FIGURE 9. Vortex-induced boundary-layer development at t = 8.5, for initial vortex distance 
d = 3. (a) Limiting streamlines on the wall; (b)  enlarged view of streamlines on the symmetry 
plane. 

decreased to 1.92, the flow variations into the boundary layer have grown 
substantially. In  figure 9(a),  we can observe the limiting streamlines on the sphere 
surface at t = 8.5 ; no flow entering the symmetry plane is able to develop, as opposite 
to the preceding case, because of the well-established outflow annulus. An enlarged 
view of streamlines in the central region is shown in figure 9 ( b ) ,  on the (4, q)-plane 
(the dotted lines indicate extrapolation of the streamline behaviour close to the wall 
after the last non-zero computed grid points). The pictures show the incipient 
formation of a stagnation point of attachment a t  q5 = 2.16; in this case, as opposed 
to the preceding one, we have a large outflow on the whole body surface which 
inhibits the formation of a separating stagnation point to close the local structure, 
and, looking at the whole of figure 9, we can catch a glimpse of a focus accompanied 
by outflow at q5 = 2.30 = 0 . 7 3 ~ ~  attached to the wall. The structure given by a focus 
enclosed between two stagnation points, as observed in the case of d = 1, is not able 
to develop completely here because of the outflow, which inhibits the separating 
stagnation point and maintains the focus very close to the surface. In  any case this 
deformed three-dimensional local structure is able to grow, pushing the field of 
secondary vorticity, increasing the spatial gradients, until at t = 8.9 the numerical 
discretization becomes inadequate to follow such variations and the model fails to 
converge. 

6. Critical-point reconstruction 
It is often of particular interest to  understand the flow field close to a rigid 

boundary, and in particular the characteristics of the most critical points. Following 
the approach presented by Perry & Fairlie (1974) (see also Perry & Chong 1986, 
1987), we can expand the limiting velocity field, close to  a no-slip boundary (this 
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(b)  Sphere 
surface 

FIGURE 10. Reconstructed flow close to critical points in the boundary layer. Three-dimensional 
view at t = 0.225, for initial vortex distance d = 1. Limiting streamlines are shown on the sphere 
surface and on the symmetry plane. (a) Critical point PI at q5 = 2.39; ( b )  critical point P2 at 
q5 = 2.87. 

means mathematically that the limit g - + O  is assumed) in a first-order Taylor series 
around a critical point, this gives 

where, in our notation, u = [u, w, v]’ and x = [$, g, 81’. 

takes the simpler structure 
In the present situation, the motion is on the ($,g)-plane, so that the matrix B 

(34) B = c d  0 .  [: B:] 

One eigenvector of the matrix is directed as 8, and the eigenspace described by the 
other two eigenvectors is the symmetry plane (or contained in it). The classification 
of the critical points is given by the analysis of the flow on the symmetry plane, i.e. 
the minor B22, and in particular by it trace, p = - (a+d), and its determinant, 
q = ad-bc.  In this formulation the five unknown coefficients of the matrix B can be 
estimated by the first derivatives of the velocity field close to the surface. 

In  the case of d = 1 at time t = 0.225 we can recognize two critical points on the 
surface, say Pi and P2, at $ = 2.39 and $ = 2.87 respectively. For P1 we get 
p = -0.55 and q = -113.13, classifying P i  as an entering saddle, for P2 we get 
p = 34.06 and q = - 2083.10, an exiting saddle. The reconstructed three-dimensional 
fields are reported in figures 10 (a) and 10 (b)  for the points Pi and P2 respectively. 
We can observe the full three-dimensional structure of the point Pi,  as expected, 
since the value of B,, is comparable with the terms in the minor B22, due to its 
localization in a region of strong outflow, as observed in $5. On the other hand the 
value of B,, for P2 is one order of magnitude smaller than the other terms in the 
matrix, and the flow is principally two-dimensional with a very small inflow from the 
third dimension. 

In  the second case, when d = 3, the situation is slightly different because of the 
presence of outflow along the entire boundary annulus. We looked at time t = 8.5, 
and recognized a critical point, say P3, at $ = 2.16, and another less definite one, P4, 
at $ = 2.30. In this case the smallness of the flow structure near the wall with the low 
spatial resolution suggest interpreting this reconstruction only in the sense of a 
glimpse, or suggestion, of the qualitative flow attached to the boundary. Computing 
the characteristics of P3 we get p = 2 and q = - 6.37, this is again an entering saddle, 
whereas for P4 we obtain p = 9.03 and q = 11.81, classifying it is a stable focus. The 
two reconstructed flows are plotted in figures 11 (a)  and 11 ( b )  respectively; we can 
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FIGURE 11. Reconstructed flow close to critical points in the boundary layer. Three-dimensional 
view at t = 8.5, for initial vortex distance d = 3. Limiting streamlines are reported on the sphere 
surface and on the symmetry plane. (a )  Critical point at P3 g5 = 2.16; ( b )  critical point at P4 
q5 = 2.30. 

observe that P3 is a very distorted saddle, influenced by the other close critical point. 
In figure 11 ( b )  we can clearly recognize the three-dimensional focus attached to the 
wall. 

7. Conclusion 
In this work the close interaction of an infinitely long vortex filament and a rigid 

sphere is analysed at very high Reynolds number. No general method exists to 
simulate high-Reynolds-number flows and different models have to be used 
separately in order to study different features of such flow fields. However, care must 
be taken and the range of validity of the model employed must be stated. 

First, the close interaction has been described assuming that the fluid is inviscid. 
The calculation has been performed using the classical cutoff method, and the initial 
conditions have been taken when the vortex filament is at  a distance from the sphere 
equal to the radius R .  The vortex filament approaches the surface of the sphere and 
stretches along it creating two opposite symmetrical kinks, which eventually touch 
each other to give rise to a highly stretched vortex ring, which lies almost on a 
meridian plane. 

The cutoff model is unable to describe the reattachment between the two parts of 
the vortex filament and must be abandoned, but the vortex singularity model can be 
employed, since it includes an intrinsic numerical viscosity able to account for the 
viscous effect dominant in the lengthscale of the vortex filament core and dominant 
in the reattachment process. The results of the calculation are quite different from 
the previous case and the weak viscous effect causes the splitting of the filament 
when the vortex core touches the surface of the body and the consequent 
reconnection with the vortex image inside the sphere. Therefore no vortex ring is 
generated. 

However in real fluids when solid boundaries are present a no-slip velocity 
condition exists, which prohibits vortex tubes from closing at the wall, and an 
unsteady boundary layer, due to the flow induced at the wall by the vortex filament, 
is expected to grow and interact with the inviscid external flow field. A timescale 
analysis has shown that the growth of the boundary layer is faster than the inviscid 
looping, which is faster than the reattachment process. Therefore the boundary-layer 
evolution, as induced by the fully inviscid external flow field, has been calculated by 
a method which allows the computation of the three-dimensional boundary-layer 
approximation close to the symmetry plane. 
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First the unsteady boundary layer has been analysed when the evolution of the 
vortex filament starts at a distance equal to the sphere radius. It rapidly grows into 
an internal secondary vortical structure, which may interact with the primary 
vortex of opposite circulation, and induces a recirculation region attached at the 
wall. This recirculation region is contained, at the wall, between two stagnation 
points, respectively of attachment and of separation, and resembles the separation 
observed in a two-dimensional vortex-driven boundary layer, with the main 
difference being that the streamlines, in the separated region, do not form closed 
loops but spiral into a focus. This is due to the presence of a flow leaving the 
symmetry plane, which is established close to the wall everywhere but in a small 
portion of relatively weak inflow. The presence of this inflow permits the presence of 
the separating stagnation point. 

Secondly, the starting position of the vortex filament has been taken at a larger 
distance from the body. The boundary-layer evolution is shown to be dependent on 
the initial distance between vortex filament and body surface. In  fact, until the 
filament approaches the sphere within a distance comparable with the sphere 
diameter, the timescale of the flow induced by the vortex is larger than that of the 
boundary layer, therefore the flow field at the wall has time to adjust to a stable, 
quasi-steady, boundary-layer configuration. The major feature is flow leaving the 
symmetry plane, from a annulus surrounding the body. This three-dimensional effect 
makes the appearance of a separating stagnation point difficult, and leads to a 
separation which seems not to produce the recirculation region at the wall. This 
behaviour of the three-dimensional flow field has been analysed by means of a 
critical-point approach. 

The boundary-layer calculations suggest, in both cases, that eventually a final 
separation, along with the generation of a secondary vortex structure ejected far 
from the wall, may happen. Therefore we should expect a pairing process between 
the secondary and the primary vortices of opposite circulation, leading to the 
rebounding of the approaching vortex filament. The approximated modelling of the 
boundary layer certainly hides some features of the three-dimensional development 
of the flow field at  the wall, and so here the fully viscous-inviscid interaction could 
not be properly reproduced. 

This work has been supported by MURST-40 %. The author is grateful to Prof. 
Bernard0 De Bernardinis for his scientific advice during the research work. 
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